Hybrid Evolutionary Methods for the
Solution of Complex Scheduling Problems

José Antonio V4zquez Rodrfguez* and Abdellah Salhi

Mathematical Sciences Department, University of Essex
Wivenhoe Park, Colchester, U. K.
javazq@gmail.com, as@essex.ac.uk

Abstract. This paper is concerned with the minimisation of makespan
and maximum lateness when scheduling Flexible Flow Shops (FFS).
Even though, hybrid evolutionary methods have provided with compe-
tent solution tools for several hard combinatorial problems, their effi-
ciency for FFS is not known. In this paper, the idea of hybridising Ge-
netic Algorithm (GA) with the Shifting Bottleneck Procedure (SBP) and
GA with a Local Search (LS) procedure, is explored. The proposed algo-
rithms, named the Shifting Bottleneck Genetic Algorithm (SBGA) and
Memetic Algorithm (MA); and the simple algorithms, GA and SBP, were
compared on solving well known benchmarks and two large sets of ran-
domly generated instances. The results revel that both hybrid methods
are very successful.

1 Introduction

This paper is concerned with the minimisation of makespan and maximum late-
ness when scheduling shops with multiple stages and multiple machines per stage.
We focus on the particular case in which all the jobs follow the same process-
ing direction. This manufacturing environment is known as Flexible Flow Shop
(FFS), [3]. Following the notation in [13], the problems of interest are denoted
as: FFc||Crnax and FFc|rj|Liyax for makespan and maximum lateness minimi-
sation, respectively.

The FFS scheduling problem is intractable, even the two stages shop version
is NP-Hard, [6). It is still NP-hard if preemptions are allowed, (7). We refer the
reader to [16], [8], [10] and [15] for surveys on approaches to it, including exact
methods, deterministic algorithms, heuristics and metaheuristics. The focus here
is on metaheuristics and bottleneck exploiting heuristics.

The processing stage with the lowest capacity/work-load ratio, named bot-
tleneck or critical stage, constraints the global performance of the system. Ef-
ficient heuristics such as the Shifting Bottleneck Procedure (SBP) exploit this
knowledge by maximising the bottleneck utilisation. Examples of successful SBP
adaptations to the FFS are described in [19] and [4]. Metaheuristics, on the other

* Corresponding author

© A. Gelbukh, S. Torres, I. Lopez (Eds.)
Advances in Artificial Intelligence
Research in Computing Science 20, 2006, pp. 17-28

18 Vdzquez Rodriguez J. and Salhi A.

hand, are the basis of several state of the art methods for a wide range of com-
binatorial problems, these include the FFS. For instance in [9], [2] and [12],
Genetic Algorithms (GA) were designed to efficiently solve different variants of
the problem. In [17] and [11], Tabu Search (TS) was utilised. The combination of
heuristics, specially a global search method, such as an evolutionary algorithm,
with a problem tailored heuristic, is a good strategy to generate even stronger
solution approaches. Memetic Algorithms (MA), which combine GA with an im-
proving procedure, are a good example of them. However, our literature review
revels that this idea has not been studied in the case of the FFS problem.

This paper introduces two new algorithms based in the idea of hybridising
GA with two specialised methods. The first algorithm uses the SBP to support
the GA and was named the Shifting Bottleneck Genetic Algorithm (SBGA). The
second algorithm uses a local search method to improve the solution provided
by GA. We refer to this method as Memetic Algorithm (MA).

In order to test the “synergy” produced by the combinations of methods in
both hybrids, SBGA, MA, GA and SBP were used to solve well known instances
of the problem, as well as a large set of randomly generated problems. The
reported results show that both of the new methods are effective solution tools
for the problem.

The rest of the paper is organised as follows. Section 2 is the formal descrip-
tion of the problem; assumptions notation and a model are presented. Section
3 describes the SBGA. Section 4 presents GA and the MA. Section 5 describes
the numerical experiments, including the problems and their origins, the results
and a discussion. Section 6 concludes the paper.

2 Problem Description

It is assumed that n jobs are to be processed through m different stages. Each
stage has at least one machine, with one or more having at least two parallel
identical machines. Any machine can process at most one job at a time and any
job is processed on at most one machine at a time. Furthermore, every job is
processed on at most one machine in any stage. Preemptions are not allowed,

i.e. once the processing of a job has started on a given machine, it can not be
stopped until it is finished.

2.1 Notation

J = job index; k = stage index; [= machine index;

n = number of jobs; m = number of stages; m; = number of machines at
stage k;

0jk = operation of job j to be processed on k; O = U;0jk;
Pjk = processing time of o0jx; rj; = release time of 0jx; djx = due date of
Ojik;

C;j = completion time of job 3; Lj = max {Cj — djm, 0}, lateness of job j.

Hybrid Evolutionary Methods for the Solution of Complex Scheduling Problems 19

2.2 Problem Formulation

Let A be a set of operations 0jk € O assigned for processing to machine ! at
stage k. Let S*! be a permutation of the elements in A*! representing the order in
which operations must be processed. Let $* = U4 S*! and § = U[*, S*. Given
that the functions approached are regular, our interest is limited to non delay
schedules. Because of this, S, being the set of sequences of jobs in all machines,
represent a unique schedule. For S, to be feasible, the following must hold: (1)
Upes A¥ = Ok Vk and (2) N™% A*! = @ Vk. These constraints guarantee that all
operations to be processed in k are assigned for processing strictly once. Let 3
be a FFS problem instance and £2¥ the set of all feasible schedules for Y. The
problem is to find a S € 2% such that its makespan Cpax,

min maxC;(S
seav 3 5(S) (1)
or its maximum lateness Lp,y,

min max L;(S))

is minimum.

3 The Shifting Bottleneck Genetic Algorithm

The SBP was introduced in [1], and so far, is one of the best established algo-
rithms to approach multiple-stage shops. SBP breaks the overall problem into
sub-problems and solves one at a time. In [4], an efficient adaptation of the orig-
inal SBP is presented (for the rest of the paper SBP refers to this version). SBP
uses the reversibility principle of the parallel machines problem (see Section 3.2)
to obtain good solutions for it efficiently. The proposed approach, uses GA to
prioritise the jobs in the critical stage of the shop. The rest of the stages are
scheduled in the order dictated by their criticality with the heuristic employed
by SBP.

3.1 Critical Stage

As mentioned, SBGA schedules the stages according to their criticality. The
criticality of stage k is the minimum time required so that all the jobs with an
operation in k pass through the shop. The one that requires the highest time,
restricts the total capacity of the shop and is the critical stage or bottleneck.
The criticality of stage k, CSk, is calculated as follows,

1 mx _ n Mk
CSi = S LsAk + Zl Pik + Zl RSA (3)
y=1 = y=

where LSA = {LSA% LSA%,..., LSAX} are the sums 3y_, psp, Vj in the as-
cending order and RSAX = {RSAf RSAS, ..., RSAY} the sums 35,0 1, pjb, Vi

20 Vdzquez Rodriguez J. and Salhi A.

in the ascending order [4]. In the brackets, the first term is the minimum time
elapsed before k becomes fully active, the second is the work load of k& (which
divided by mj provides the minimum processing time in k) finally, the thirq
term is the minimum time required by the last jobs processed in k to exit the
shop. The critical stage k is the one with the largest CS) value.

3.2 Heuristic Approach for the Parallel Machines Scheduling
Problem

SBP and SBGA decompose the original problem into stages and schedule one at,
a time fixing the rest. A sub-problem for stage k, can be handled as a paralle]
machines problem with release dates r;x and due dates djk (Pm|rjk, dji| Loy,
see notation in [13]) and a solution to it can be obtained as follows.

Algorithm procedureA()
1. while Oy # 0 do

a. set ¢t as the maximum between the time that the first machine in k
becomes idle and the minimum release time of the operations in Oy;

b. select the operation ojy € Ok :7ji < t with the smallest due date (d;y),
break ties by preferring longer pjx;

c. assign 03;; to the first idle machine;

d. Ok = Ox\0jy..

Given a Pm|rjx, djk|Linax problem, its inverse P'm|riy, d}y|Lmax , is obtained
using the negatives of the due dates and release dates of Pm as release and
due dates, respectively, in P'm, i.e. 7j = —djx and dj = —7jr. Let 7 =
(7(1),7(2), ..., 7(|Ok|)) be a sequence of tasks in a given machine, then w =
(7(|Ok]), 7(|Ok| = 1), ..., w(1)) is the reverse of w. The algorithm presented in (4],
for the Pm|r;, dj|Lmax problem is as follows.

Algorithm Pm()

1. obtain P'm;

2. solve Pm and P'm using procedureA(), reverse the solution obtained for
P'm, calculate L.y for both solutions.

3. Return the schedule with the minimum maximum lateness.

Note that procedureA is not an exact algorithm, therefore, the solutions

provided by it, when applied to the original problem and its inverse, may be
different. We are interested in the best of them.

3.3 Representation and Evaluation of Solutions

A classical permutation representation, as explained in (5], was adopted. In this,
every individual is a permutation 7 = (7(1),7(2), ..., 7(|Ok|)) where 7(7) is 2
job index. 7 represents the sequence to prioritise the operations at the critical
stage k'. In k', operations are assigned in the order dictated by 7 to the machine

Hybrid Evolutionary Methods for the Solution of Complex Scheduling Problems 21

that allows them the fastest completion time. Let K be the set of stage indexes
(k) sorted in decreasing order of their CS values (see Section 3.1), in such a
way that K points to the bottleneck of the shop. The procedure to evaluate an
individual is as follows.

Algorithm CP(m, K)

. set S =0 (an initial empty schedule).

2. generate S by assigning each 0jk, in the order dictated by 7 to the ma-
chine [in stage K that allows it the fastest completion time, S = S U S¥1;

3. update release times and due dates as described in Section 3.4;

4. fori=2:mdo
a. generate S using Pm(), S = SuU SK+;
b. update release times and tails as described in Section 3.4;

5. return max; C;(S) and S.

[

Note that at steps 2 and 4a, S is updated with the information of sub-schedule
S¥K: obtained for stage K;.

3.4 Updating Release Times and Due Dates

At the initialisation, the release times of operations to be processed at stages
posterior to the first one are calculated as follows 7, = 7j; +Zt='ll Pjb, k> 1;and
the due dates of previous stages to the last one, as follows d;x = — j1+Z:__‘f,l" Djbs
k < m. The release times at the first stage and due dates at the last one are
given as part of the problem, otherwise they are set to 0.

Let us suppose that stage k is the one just scheduled at step 2 or 4a of the
CP() procedure. The release times must be updated for the operations in every
stage k > k and the due dates for the operations in every stage k < k. Remember
that S*! is the sequence of jobs assigned to machine [in k (see Section 2.2), let
q= lSkll. The release times are updated as follows.

Algorithm URT()
for k=k:mdo
a. if Sk = () (if stage k has not been scheduled) do
io mjk = Tjk—1 + Pjk-1,V7;
ii. end
b. forl=1:m do
i rery_y = Tgkig_1 T Pskk-1
ii. forh=2:¢qdo
A. rgiy = max {TS,‘:‘k—l + Pskig—1:TsE K +Ps,':'_lk}-

The due dates are updated with the following procedure.

Algorithm UDD()
for k=k:1do

22 Vazquez Rodriguez J. and Salhi A.

a. if Sk = 0 (if stage k has not been scheduled) do
i. djk = djk+1 + Pjk+1, V55
ii. end
b. for l =1:m do
i. dS:'k = d551k+1 +p5;1k+1;
ii. forh=qgq—-1:1:-1do

A. dguy = max {ds;'kﬂ + Psktks1r dspl +Ps,';'+,k}-

3.5 Genetic Operators

SBGA maintains a population Pop of N individuals. At every generation, a new
population Pop’ is generated sampling in the search space by means of the ge-
netic operators and using the information of the best individuals in Pop. Each
new individual is created using one of the GA operators: crossover, mutation
or direct reproduction. The order crossover (OX) was chosen as recombination
method. It showed a better performance in a pre-experimental stage when com-
pared with other crossover methods such as edge, cycle and partially mapped
crossover (see [5]). In OX, two individuals (parents) and two crossing points are
randomly chosen. The elements of the first parent that are in between the two
crossing points are copied in the same positions to the new one. The rest are
copied in the same order than in the second parent following a toroidal path (see
[5] for more details). The mutation employed is the random generation of a new
individual. Let rep be N minus the number of individuals not created through
crossover or mutation. In order to provide elitism, the rep best fitted individuals
in Pop are copied to complete Pop'.

The selection method of individuals, to participate for crossover or mutation,
is binary tournament selection. In this, 2 individuals are selected randomly from
the population, they compete among them, and the fittest participates in the
crossover process, [5].

3.6 SBGA General Framework

At the initialisation N individuals are generated randomly and evaluated using
the CP() procedure. The criticality CS of every stage k is calculated using
formula 3 and the ordered set K’ is generated (see Section 3.3). The release
times 7;x and due dates dj are calculated as described in Section 3.4.

The general framework of SBGA is as follows.

Algorithm SBGA()

1. calculate the ordered set K’ (see Section3.3), initialise release times and due
dates (see Section 3.4).

2. generate a set Pop of N random permutations, CPY, (Pop;, K'), i.e. evaluate
each solution using the procedure described in Section 3.3, let 7* be the best
solution in Pop;

3. generate a set Pop' of N new solutions by applying the GA operators (Section
3.5), CPX, (Pop), K');

Hybrid Evolutionary Methods for the Solution of Complex Scheduling Problems 23

4. let Pop be the best N solutions in Pop’|J7*, let 7* be the best solution
found so far;

5. if stopping condition not met go to 3;

6. return 7"*.

4 Alternative Methods

Given that SBGA is a hybrid algorithm, it is important to know if its SBP com-
ponent provides any added value to the final algorithm. In order to explore this,
a GA named Multiple Stages Representation GA (MSRGA), whose individuals
represent full schedules, was encoded. MSRGA uses the same genetic operators
as SBGA, but it does not use any specialised information. Since SBP has been
proved to be an effective scheduling tool, it is expected that it will provide good
information to SBGA. However, to evaluate how good this information is, it will
be compared with the one provided by a Local Search (LS) method based on an
efficient, already tested, neighbourhood function, [11]. A third algorithm, which
uses LS to improve the performance of MSRGA, was designed. Given that these
sort of hybrid methods are usually referred to as Memetic Algorithms, this third
algorithm was named MA. Finally, in order to know to what extent the addi-
tion of a stochastic method to SBP, is beneficial, SBP as described in [4], was
implemented and tested.

The rest of this section describes the implementation details of MSRGA and
MA. We refer the reader to [4], for details on SBP.

4.1 Multiple Stages Representation GA

Representation and Evaluation of Individuals Every individual in MSRGA
is a set T = {my,m2,...,mm} of permutations, one for every stage of the shop,
representing the assigning order of jobs at every stage. To evaluate an individual,
operations at stage k are scheduled in the order dictated by 7y in the machine [
in k that allows them the fastest completion time. This procedure is as follows.

Algorithm CPysrca(IT)
1. set S = 0 (an initial empty schedule);
2. fork=1:mdo
a. generate S* by assigning the operations in the order dictated by m; to
the machine that allows them the fastest completion time;
b. S = S U Sk, update release times (see Section 3.4);

3. return max; C;(S).
Note that stages are scheduled in the order 1,2, ..., m, because of this, the

release times need to be updated just for the stage being scheduled (k) and, if
k < m, for stage k + 1 too. The due dates are not updated.

24 Vazquez Rodriguez J. and Salhi A.

GA General Framework At initialisation, N individuals are generated ran-
domly and evaluated using the CPasrea(IT) procedure. At every iteration,
new population Pop’ is generated using the genetic operators as described ip
Section 3.5. But in this case, let A and B be the set of m permutations of par-
ents A and B chosen to be recombined through crossover. Every permutation ¢,
of the new individual C, is the result of applying OX to the permutation ax € A
and b, € B.

The general framework of MSRGA is as described in Section 3.6 for the
SBGA, but at step 1, there is no need to calculate K’ neither the due dates. In
steps 2 and 3 CP(, K') is substituted by CPrsrea(Il).

4.2 Memetic Algorithm

In MA, the representation of individuals and the genetic operators are as de-
scribed for MSRGA. However, in MA the procedure to evaluate individuals re-
quires the use of a Local Search (LS) procedure. We refer the reader to [11] for
a description and theoretical basis of the neighbourhood function on which LS
is based.

To evaluate an individual, this is decoded by means of CPysrca(), LS is
then used to improve it. In algorithmic form, the evaluation of individuals in
MA is as follows.

Algorithm CPyy4(IT)
1. S = CPysrca(Il), i.e. generate initial schedule;
2. §' = LS(S), i.e. improve S using LS;
3. return max; C;(S’).

The general framework of MA is as the one described for MSRGA, but sub-
stituting CPyprsrga(IT) with CPpya(IT).

5 Computational Experience

In order to evaluate the described methods, they were run on three different
problem sets. The first one is, perhaps, the best known test-set for the FFS
problem, [18]. The second and third are random instances generated in a similar
fashion as in [19], [4] and [9].

Being SBP a deterministic heuristic, it does not require input parameters and
it was run once on every instance. For the rest of the algorithms, the following
parameter settings showed being appropriate.

— population size: SBGA 100, MSRGA 100, MA 30

— crossover rate: 95% for the three algorithms

— mutation rate: 1% for the three algorithms

stopping condition: MSRGA was run on every problem until it did not
show improvement for 100 consecutive generations or it reached a maxi-
mum processing time of 60 seconds. This time was recorded and set as the
stopping condition for MA and SBGA.

Hybrid Evolutionary Methods for the Solution of Complex Scheduling Problems 25

Table 1. performance on IBM Wittrock’s instances

Instance SBP MSRGA MA SBGA
1 761 820 760 760
769 793 763 755
761 784 767 759
781 787 772 761
961 961 961 961
667 674 665 659

SOk W N

SBGA, MSRGA and MA were run 5 times on every instance, the best found
solution was reported. The four algorithms were encoded in Java S.E. 5.0. All the
experiments were executed on identical PC’s (Pentium IV, 3.0GH, 1Gb RAM)
running Windows XP.

5.1 Results on IBM Wittrock’s Instances

Here we report the performance of the 4 algorithms on Wittrock’s test-bed, [18],
from an IBM production line. This line, inserts components into printed circuit
cards. Every card is transported in a magazine that holds 100 identical cards.
The magazines have to go through three different types of machines: two “DIP
inserters”, three “SIP inserters” and three robots. The required time for each
magazine in every stage depends on the type of card that it holds. The problem
instances are the production needs for 6 days, for which, a daily schedule with
minimum makespan, is required. Any transportation times between stages were
neglected. Table 1 presents the results.

In 5 out of 6 instances SBGA outperformed SBP and GA and it was better
than MA in 4 out of 6. MA, on the other hand, was superior to MSRGA in 5
out of 6 instances and to SBP in 4 out of 6. These results suggest that SBP and
LS provide useful information to GA, being the one by SBP superior. However,
conclusions can not be obtained from such a small sample. Next, the results in
two large sets of randomly generated instances are reported.

5.2 Randomly Generated Instances

A set of 1080 instances for makespan and 1296 for maximum lateness were
generated in a similar fashion as in [9] and [4]. The makespan and maximum
lateness obtained by the algorithms, on each of these, were compared with the
lower bound (LB) described in [14]. Since our problems are minimisation ones,
when a solution reaches a makespan or lateness value equal to the one provided
by LB, an optimal solution has been found. Table 2 displays the success rate of
each algorithm on both objectives.

The most successful method is SBGA, followed by MA, SBP and finally
MSRGA. Enough evidence has been collected to conclude that a generic method
such as GA is not competitive. Moreover it is evident that SBP and GA work
quite well together, the success rate of SBGA is around twice the one of SBP

26 Vizquez Rodriguez J. and Salhi A.

Table 2. success rate on randomly generated instances

Opt. criterion MSRGA MA SBP SBGA
makespan 11.42% 32.72% 24.26% 54.91%
lateness 9.26% 46.38% 38.04% 60.57%

and around 5 times higher than that of MSRGA. MA, on the other hand, is alsq
more competitive than MSRGA and SBP, but not as SBGA. Next, the mean
deviations from the lower bounds obtained by the algorithms are presented. The
results are reported for subsets of instances dictated by their characteristics, thig
will provide an idea of the effects of the instance characteristics on the algorithmg
performance.

The deviation on Ceax, DCai max, of algorithm a € {MSRGA, SBGA, ..}
on instance i with respect to the lower bound value LB;, is calculated as:

ROL o v BT @)

Given a set I of problem instances of interest, the deviation with respect to the
lower bound for L.« is calculated as:

3" (L maxgq; —LB;)

i€l
Y LB;
i€l
where DL, max is the maximum lateness deviations from LB, obtained by
algorithm a on a set of instances I.

Table 3 presents the mean DC,; max and DL,; max values of each algorithm
on the sets of instances described on the first two columns.

The best performing algorithm, on the whole and on the different instance
subsets presented in Table 3, is SBGA. It can be concluded from this, that GA
and SBP collaborate positively. On the other hand, MA also reported better
results than SBP and GA which shows the benefits of adding LS to MSRGA.
The results on Table 3, let no place for discussion the need of using specialised
information to approach FFS problems. However, it was necessary its testing to
safely conclude that SBP and LS enhance the performance of GA. Moreover, the
quality of information provided by SBP is comparable and superior, at least on
the testbed presented, to that of a competitive local search method.

Regarding the computational times, SBP is far faster than any of the three
other methods. Its required time never exceeded 5 seconds even for the largest
instances. On the other hand the rest of the methods run for 1 minute in most
of the instances with 6 and 7 stages and 100 jobs. For the rest of the problems
this time limit was rarely reached. On the practice 1 minute of computational
cost, to schedule a 700 operations shop, is reasonable. For an acceptable extra
cost, GA can enhance the performance of SBP from an average deviation of
5.86% to 1.38% and from 3.15% to 0.83% for makespan and maximum lateness,
respectively. This could represent important savings on real world shops.

DL, max = * 100 (5)

Hybrid Evolutionary Methods for the Solution of Complex Scheduling Problems ~ 27

Table 3. deviation from lower bound on randomly generated instances

parameter value DC . max DL,r max
MSRGA MA SBP SBGA MSRGA MA SBP SBCA
n
10 14.36 4.97 8.99 2.68 112.16 9.56 18.32 5.72
20 2238 3.26 7.15 1.58 98.56 4.23 6.05 1.10
50 88.46 1.65 4.06 0.73 79.87 132 199 0.39
100 127.88 1.84 3.21 0.54 65.23 0.79 1.29 0.35
m
[2,3] 36.45 235 4.79 1.29 39.65 0.79 1.35 0.50
(4,5] 61.35 259 5.75 1.23 48.11 1.12 1.72 0.37
(6,7) 92.01 385 7.03 163 5936 137 211 040
me : '
(1,2] 70.36 2.87 6.83 0.84 38.37 0.68 275 0.31
(1,4] 54.68 2.66 5.42 1.14 59.84 1.09 199 0.39
(1,8] 64.77 3.26 5.31 2.17 77.59 0.98 1.90 1.18
Pjk

(10,20} 40.02 237 3.87 1.13 6523 0.69 1.13 0.40
(10, 100] 86.52 349 7.83 1.64 89.26 0.78 2.60 0.59
total

63.27 293 586 1.38 7834 2.67 3.15 0.83

6 Conclusion

A new hybrid GA and SBP for the solution of FFS scheduling problems has been
presented. This algorithm was compared versus a Multiple Stage Representation
GA, a Memetic Algorithm and the Shifting Bottleneck Procedure on the solution
of well known benchmarks and two large randomly generated test sets.

The proposed algorithm outperformed its competitors in all tests. It obtained
deviations of 1.38% and 0.83% from lower bounds for makespan and lateness
minimisation respectively and success rates of 54.9% and 60.57% for the same
problems. Given that SBGA outperformed both, SBP and GA, it is reasonable
to conclude that there is an important collaboration between the GA component
and the SBP one. In other words, the relation GA and SBP, as in SBGA, seems
to be highly “synergic”. On the other hand, it is also clear that the information
provided by SBP to GA is of a higher quality than that of a well established
local search method.

To implement SBGA does not represent more challenge than SBP, moreover,
the former improved the results of the latter by a 4% and 2%, on average, for
makespan and maximum lateness minimisation, respectively. Because of this,
and the fact that the CPU cost required by SBGA is reasonable, SBGA is a
sensible choice in the practice.

Despite the extent of this investigation, it remains to test SBGA on prob-
lems with other optimisation criteria; and investigate its performance on other
problems such as job, open and assembly shops.

28

7

It
17

Vdzquez Rodriguez J. and Salhi A.

Acknowledgements

is a pleasure to acknowledge the support from CONACyT through grap
8473.

References

1

2:

[33]

10.

11.

12.

16.

17.

18.

. J. Adams, E. Balas, and D. Zawack. The shifting bottleneck procedure for jop,

shop scheduling. Management Science, 34:391-401, 1988.

S. Bertel and J. C. Billaut. A genetic algorithm for an industrial multiprocessor

flow shop scheduling problem with recirculation. European Journal of Operationg|

Research, 159:651-662, 2004.

. S. A. Brah and J. L. Hunsucker. Branch and bound algorithm for the flow shop
with multiple processors. European Journal or Operational Research, 51:88-99,
1991.

. J. Cheng, Y. Karuno, and H. Kise. A shiting bottleneck approach for a paralle]-
machine flow shop scheduling problem. Journal of the Operations Research Society
of Japan, 44:140-156, 2001.

. A. E. Eiben and J. E. Smith. Introduction to Evolutionary Computing. Springer,
2003.

. J. N. D. Gupta. Two-stage hybrid flow shop scheduling problem. Operational
Research Society, 39:359-364, 1988.

. J. A. Hoogeveen, J. K. Lenstra, and B. Veltman. Preemptive scheduling in a
two-stage multiprocessor flow shop is NP-hard. European Journal of Operational
Research, 89:172-175, 1996.

. M. E. Kurz and R. G. Askin. Comparing scheduling rules for flexible flow lines.
International Journal of Production Economics, 85:371-388, 2003.

. M. E. Kurz and R. G. Askin. Scheduling flexible flow lines with sequence dependent

set-up times. European Journal of Operational Research, 159:66-82, 2003.

R. Linn and W. Zhang. Hybrid flow shop scheduling: A survey. Computers &

Industrial Engineering, 37:57-61, 1999.

E. Nowicki and C. Smutnicki. The flow shop with parallel machines: A tabu search

approach. European Journal of Operational Research, 106:226-253, 1998.

C. Oguz and M. F. Ercan. A genetic algorithm for hybrid flow shop scheduling

with multiprocessor tasks. Journal of Scheduling, 8:323-351, 2005.

. M. Pinedo. Scheduling Theory, Algorithms and Systems. Prentice Hall, 2002.

. D. L. Santos, J. L. Hunsucker, and D. E. Deal. Global lower bounds for flow shops
with multiple processors. European Journal of Operational Research, 80:112-120,
1995.

. A. Vignier, J. C. Billaut, and C. Proust. Les problémes d’ordonnancement de type

flow-shop hybride: état de I'art. Operations Research, 33:117-183, 1999.

H. Wang. Flexible flow shop scheduling: Optimum, heuristics and artifical intelli-

gence solutions. Ezpert Systems, 22:78-85, 2005.

B. Wardono and Y. Fathi. A tabu search algorithm for the multi-stage parallel

machines problem with limited buffer capacities. European Journal of Operational

Research, 155:380-401, 2004.

R. J. Wittrock. An adaptable scheduling algorithm for flexible flow lines. Opera-
tions Research, 36:445-453, 1988.

. Y. Yang. Optimization and Heuristic Algorithms for Flezible Flow Shop Scheduling.

PhD thesis, Columbia University, 1998.

